Statistical Learning-Based Spatial Downscaling Models for Precipitation Distribution

نویسندگان

چکیده

The downscaling technique produces high spatial resolution precipitation distribution in order to analyze impacts of climate change data-scarce regions or local scales. In this study, based on three statistical learning algorithms, such as support vector machine (SVM), random forest regression (RF), and gradient boosting regressor (GBR), we proposed an efficient approach produce precipitation. demonstrate efficiency accuracy our models over traditional multilinear (MLR) models, did a analysis for daily observed data from 34 monitoring sites Bangladesh. Validation revealed that R 2 GBR could reach 0.98, compared with RF (0.94), SVM (0.88), (0.69) so the GBR-based model had best performance among all four models. We suggest should be used replace MLR more accurate map high-resolution flood disaster management, drought forecasting, long-term planning land water resources.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical downscaling of precipitation

Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Global Circulation Models (GCMs) are a major tool used for future projections of climate change using different emission scenarios. However, for assessing the hydrological impacts of climate change at the watershed and the regional scale, ...

متن کامل

Statistical Downscaling Based on Spartan Spatial Random Fields

Stochastic methods of space-time interpolation and conditional simulation have been used in statistical downscaling approaches to increase the resolution of measured fields. One of the popular interpolation methods in geostatistics is kriging, also known as optimal interpolation in data assimilation. Kriging is a stochastic, linear interpolator which incorporates time/space variability by means...

متن کامل

Sparse regularization for precipitation downscaling

[1] Downscaling of remotely sensed precipitation images and outputs of general circulation models has been a subject of intense interest in hydrometeorology. The problem of downscaling is basically one of resolution enhancement, that is, appropriately adding details or high frequency features onto a low-resolution observation or simulated rainfall field. Invoking the property of rainfall self s...

متن کامل

Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing

We present a novel statistical downscaling method that provides accurate and relatively transparent simulations of local-scale precipitation characteristics. The method combines large-scale upper-air circulation with surface precipitation fields, and is based on a nonhomogeneous stochastic weather typing approach. Here we applay the method to downscale precipitation at 37 rain gauges in the sta...

متن کامل

Downscaling of daily precipitation

Downscaling of daily precipitation with a stochastic weather generator for the subtropical region in South China Y. D. Chen, X. Chen, C.-Y. Xu, and Q. Shao Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong, China State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China Department of Geosci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Meteorology

سال: 2022

ISSN: ['1687-9309', '1687-9317']

DOI: https://doi.org/10.1155/2022/3140872